ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Trump Media to merge with fusion startup TAE Technologies in $6B deal
Trump Media & Technology Group, the American media and technology company majority owned by President Trump, and California-based fusion company TAE Technologies, announced on Thursday the signing of a definitive merger agreement to combine in an all-stock transaction valued at more than $6 billion.
Peter Glück
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 122-126
Technical Notes on Cold Fusion | doi.org/10.13182/FST93-A30180
Articles are hosted by Taylor and Francis Online.
The lack of reproducibility of the cold fusion experiments, aggravated by the great diversity and inconsistency of the positive results, implies that these nuclear phenomena are hypersensitive, i.e., correlated to a “chaotic” factor. All the factors considered so far, such as structure, transformations, or defects of the crystal lattice; bubbles of deuterium; dendrites, etc., are insufficiently chaotic to explain the known facts. Experimental data suggest that nuclear reactions take place in active sites on the surface of the lattice, that they are stimulated by dynamics factors, and that they represent an extreme form of heterogeneous catalysis. Consequently, according to modern ideas concerning catalysis, the desired chaotic factor is the surface dynamics of some metallic deutendes (hydrides). This hypothesis, called the surfdyn concept, is compatible with all published data, explains the peculiarities of cold fusion, and must be supported by an adequate theory describing the nature and mechanisms of the different nuclear processes.