ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Hideaki Matsuura, Yasuyuki Nakao, Yutaka Tanaka, Kazuhiko Kudo
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 17-27
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30171
Articles are hosted by Taylor and Francis Online.
Formation of an effective ion tail due to neutral beam injection heating during startup in D-3He plasmas is investigated. The main idea is to reduce the energy input required for startup heating as well as the 14-MeV neutron yield by creating an effective tail The optimal beam injection energy and beam species are first estimated by solving the steady-state Fokker-Planck equations for the injected species and for tritons. The startup of D-3He plasma is simulated by simultaneously solving the time-dependent power balance and particle conservation equations together with the Fokker-Planck equations. As a result of tail formation in the fuel ion distribution, both the total input energy and the 14-MeV neutron yield during the startup phase are reduced by ∼20% from the values for Maxwellian plasma.