ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
A. René Raffray, Mark S. Tillack, Mohamed A. Abdou
Fusion Science and Technology | Volume 23 | Number 3 | May 1993 | Pages 281-308
Technical Paper | Blanket Engineering | doi.org/10.13182/FST93-A30157
Articles are hosted by Taylor and Francis Online.
Thermal control is an important issue for ceramic breeder blankets since the breeder needs to operate within its temperature window for the tritium release and inventory to be acceptable. A thermal control region is applicable not only to situations where the coolant can be run at low temperature, such as for the International Thermonuclear Experimental Reactor (ITER) base blanket, but also to ITER test module and power reactor situations, where it would allow for ceramic breeder operation over a wide range of power densities in space and time. Four thermal control mechanisms applicable to ceramic breeder blanket designs are described: a helium gap, a beryllium sintered block region, a beryllium sintered block region with a metallic felt at the beryllium-cladding interface, and a beryllium packed-bed region. Key advantages and issues associated with each of these mechanisms are discussed. Experimental and modeling studies focusing on beryllium packed-bed thermal conductivity and wall conductance, and beryllium sintered block-stainless steel cladding contact resistance are then described. Finally, an assessment of the potential of the different mechanisms for both passive and active control is carried out based on example calculations for a given set of ITER-like conditions.