ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Edmund Storms
Fusion Science and Technology | Volume 23 | Number 2 | March 1993 | Pages 230-245
Technical Note on Cold Fusion | doi.org/10.13182/FST93-A30151
Articles are hosted by Taylor and Francis Online.
Two pieces of palladium sheet similar to that used by Takahashi were loaded with deuterium in a Pons-Fleischmann-type electrolytic cell, and heat production was measured. One sheet produced a steady increase in excess power that reached 7.5 W (20% of input power) before the study was interrupted. A second similar sheet from a different batch of palladium did not produce any measurable excess power. There were differences in the loading behavior, the maximum stoichiometry, and the presence of excess volume in the deuteride made from these materials. The first sheet contained 0.8% excess volume after having been deloaded from its maximum deuterium/palladium (D/Pd) ratio of 0.82 to 0.73, and the second sheet contained 13.5% excess volume while at its maximum ratio of 0.75. The high excess volume in the latter case is an indication of internal escape paths that reduce the required high D/Pd ratio.