ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
W. M. Stacey, Jr.
Fusion Science and Technology | Volume 23 | Number 2 | March 1993 | Pages 157-166
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30145
Articles are hosted by Taylor and Francis Online.
A new “rotational” energy flux is derived for highly collisional impurity ions in tokamaks with strong unbalanced neutral beam injection (NBI). The derivation is based on a consistent ordering of kinetic theory. The rotational flux, which is of a collisional origin and vanishes when the rotation vanishes, is ∼ε2δ−1 times larger than the conventional neoclassical energy flux. This rotational energy flux and a previously derived momentum flux of a similar nature reproduce the experimentally observed relation between momentum and ion energy transport, τφ/τi ∼ O(1), χφ/χi ∼ O(1). The magnitude of χi resulting from this rotational energy flux is the same as is observed in many tokamaks with strong unbalanced NBI. This suggests the control of energy confinement via the control of impurity content in strongly rotating tokamak plasmas.