ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
W. M. Stacey, Jr.
Fusion Science and Technology | Volume 23 | Number 2 | March 1993 | Pages 157-166
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30145
Articles are hosted by Taylor and Francis Online.
A new “rotational” energy flux is derived for highly collisional impurity ions in tokamaks with strong unbalanced neutral beam injection (NBI). The derivation is based on a consistent ordering of kinetic theory. The rotational flux, which is of a collisional origin and vanishes when the rotation vanishes, is ∼ε2δ−1 times larger than the conventional neoclassical energy flux. This rotational energy flux and a previously derived momentum flux of a similar nature reproduce the experimentally observed relation between momentum and ion energy transport, τφ/τi ∼ O(1), χφ/χi ∼ O(1). The magnitude of χi resulting from this rotational energy flux is the same as is observed in many tokamaks with strong unbalanced NBI. This suggests the control of energy confinement via the control of impurity content in strongly rotating tokamak plasmas.