ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Shigeru Akiyama, Shigeyasu Amada
Fusion Science and Technology | Volume 23 | Number 4 | July 1993 | Pages 426-434
Technical Paper | Material Engineering | doi.org/10.13182/FST93-A30135
Articles are hosted by Taylor and Francis Online.
Structural ceramics are attracting attention in the development of nuclear fusion reactors because they have excellent wear- and heat-resistant characteristics. However, in some applications, they will be exposed to very high temperature and high-heat-flux environments. These ceramics are also subjected to thermal loadings that change rapidly with time. Therefore, it is important to investigate their thermal shock characteristics. A new approach to evaluate the thermal shock resistance of structural ceramics is based on laser pulse irradiation on the ceramic surface. The temperature and thermal stress distributions of cylindrical ceramics under irradiation by laser beams are discussed by using the MARC finite element computer code with arbitrary quadrilateral axisymmetric ring elements. The relationship between the spot diameter of the laser beam and the maximum compressive thermal stress is derived for various power densities of the laser beams. A critical fracture curve is obtained from these relationships that can specify a critical power density for a given laser beam spot diameter. The irradiation experiments are done on a machinable ceramic by using a CO2 laser. Finally, theoretical results are compared with experimental ones. Both results show good agreements. Consequently, this method can be a new standard thermal shock test instead of the water quench test that has been used widely.