ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NRC to conduct environmental review of GLE’s enrichment facility
As part of its environmental review of Global Laser Enrichment’s planned Paducah Laser Enrichment Facility (PLEF) in Kentucky, the Nuclear Regulatory Commission announced it will conduct a scoping process ahead of preparing an environmental impact statement for GLE’s license application. Announced in the September 5 Federal Register, the NRC is seeking written comments on the scope of the EIS until October 6.
Guang Lin Zheng, Peter E. Wellstead, Michael L. Browne
Fusion Science and Technology | Volume 23 | Number 4 | July 1993 | Pages 369-384
Technical Paper | Plasma Engineering | doi.org/10.13182/FST93-A30130
Articles are hosted by Taylor and Francis Online.
The plasma vertical position system in a tokamak device can be open-loop unstable with time-varying dynamics, such that the instability increases with system dynamical changes. Time-varying unstable dynamics makes the plasma vertical position a particularly difficult one to control with traditional fixed-coefficient controllers. A self-tuning technique offers a new solution of the plasma vertical position control problem by an adaptive control approach. Specifically, the self-tuning controller automatically tunes the controller parameters without an a priori knowledge of the system dynamics and continuously tracks dynamical changes within the system, thereby providing the system with auto-tuning and adaptive tuning capabilities. An overview of the self-tuning methods is given, and their applicability to a simulation of the Joint European Torus (JET) vertical plasma position system is illustrated. Specifically, the applicability of pole-assignment and generalized predictive control self-tuning methods to the vertical plasma position system is demonstrated.