ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Takaaki Matsumoto
Fusion Science and Technology | Volume 23 | Number 1 | January 1993 | Pages 103-113
Technical Note on Cold Fusion | doi.org/10.13182/FST93-A30125
Articles are hosted by Taylor and Francis Online.
Cold fusion products from the electrolysis of heavy water have been directly measured by using a thin palladium foil. Several anomalous traces have been clearly recorded on nuclear emulsions. Some traces have meshlike structures, which are classified into two types: (a) ones associated with ring traces that are caused by the gravity decay of quadneutrons and (b) ones with no ring traces. The mechanisms that form these meshlike traces are discussed in terms of the Nattoh model. It is inferred that multiple-neutron nuclei such as quad-neutrons, covered by itonic mesh and iton beads, are born during cold fusion. Furthermore, other anomalous traces suggest the production of a new heavy particle during gravity decay.