ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Osamu Mitarai, Akira Hirose, Harvey M. Skarsgard
Fusion Science and Technology | Volume 23 | Number 1 | January 1993 | Pages 79-91
Technical Paper | Alpha Particle | doi.org/10.13182/FST93-A30122
Articles are hosted by Taylor and Francis Online.
It is shown that a tokamak with a major radius larger than ∼6 m and a toroidal field of 10 T can reach ignition by ohmic heating alone at a relatively low peak density [n(0) ∼ 1 × 1020 m−3] even with confinement degradation due to alpha-particle heating, provided a confinement enhancement factor of γH = 2 over the Goldston scaling is assumed. The critical toroidal field and plasma current required for ohmic ignition have been estimated for various sizes of tokamaks with major radii R = 2 m (compact), 6 m [International Thermonuclear Experimental Reactor (ITER) class], and 10 m (large tokamaks). If a broad current profile can be achieved transiently, the critical toroidal field and plasma current can be further reduced by the enhancement in the ohmic heating power.