ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Sergei Yu. Medvedev, Sergei E. Sharapov
Fusion Science and Technology | Volume 22 | Number 4 | December 1992 | Pages 470-473
Alpha-Particle Special | doi.org/10.13182/FST92-A30082
Articles are hosted by Taylor and Francis Online.
The stabilizing compressibility effect of trapped alpha particles on low-frequency magnetohydrodynamic (MHD) ballooning modes (Re ω ≪ Im ω) in the International Thermonuclear Experimental Reactor (ITER) is investigated. It is found that this stabilization is the most effective one in the central region of the plasma column, where the unstable region of MHD ballooning modes is located for typical flat q(ψ) profiles in ITER. The alpha-particle distribution function is supposed to be isotropic and slowing down in energy. It has been found that the values of βα/βtotal ≅ 1.5 to 2.0% are sufficient to stabilize ballooning modes in the central low-shear region for the peaked pressure profiles [P(ψ) = P(0)(1 − ψ)γ] proposed for ITER. The value of βα/βtotal remains almost unchanged to suppress the instability for all γ = 1.0 to 2.0.