ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Hosny M. Attaya, Mohamed E. Sawan, Gerald L. Kulcinski
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 115-123
Technical Paper | D-3He/Fusion Reactor | doi.org/10.13182/FST92-A30061
Articles are hosted by Taylor and Francis Online.
The management and disposal of the radioactive waste generated in any nuclear system are major safety and environmental concerns for the deployment of such a power source. The waste disposal rating is compared for four structural materials when used in deuteriumtritium, deuterium-deuterium, and D-3He fusion reactors. The materials considered are HT-9, primary candidate alloy (PCA), Tenelon, and a modified HT-9. Generic models for the reactors are assumed such that each produces a fusion power ofI0MW/m of the axial length and has a sufficient shield/blanket to produce identical magnet damage rates. The latter is achieved by varying the material compositions and thicknesses. The results show that using the advanced fuel cycle D-3He, with its low neutron yield, alleviates the activation problems and also allows considerable volume reduction of the radioactive waste. This cycle also permits the use of conventional alloys and at the same time satisfies the regulations criteria for shallow land burial of the low-level waste. In addition, and because of the low damage rate in the D-3He reactors, the useful lifetimes of the materials are greatly increased.