ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
John M. Dawson
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 98-102
Technical Paper | D-3He/Fusion Reactor | doi.org/10.13182/FST92-A30058
Articles are hosted by Taylor and Francis Online.
Nonenergy applications of fusion reactors are considered. The direct use of the 14.7-MeV protons from the D-3He reaction for the production of positron-emitting isotopes for medical, industrial, and scientific uses is explored in some detail. Inside a working D-3He reactor, the 14.7-MeV proton flux is of the order of 1022 cm2/s. The conversion of fertile nuclei to useful nuclei can be very prolific. Since the value of such isotopes can be very high (approximately $1012/g), it is possible to have an economical reactor for a machine that just breaks even or is even below breakeven in energy terms. Existing research devices can produce interesting quantities of isotopes for experimental and demonstration purposes. A major problem is the development of a demand for the large quantities of positron emitters that could be produced. If such a source of isotopes were to exist, as with many new developments, the demand would probably follow.