ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Richard F. Post, John F. Santarius
Fusion Science and Technology | Volume 22 | Number 1 | August 1992 | Pages 13-26
Technical Paper | D-3He/Fusion Reactor | doi.org/10.13182/FST92-A30049
Articles are hosted by Taylor and Francis Online.
The special synergisms between open-ended magnetic confinement systems and the D-3He fuel cycle are discussed, both in general terms and through examples. Properties of open systems that make them especially suited for this fuel cycle include their ability to stably confine high-beta plasmas, their compatibility with electrostatic direct converters, and their linear geometry, which can greatly simplify the practical attainment of high magnetic fields. The example systems given include a “linear collider” and thermal barrier tandem mirror systems for both terrestrial and space travel applications. It is concluded that satisfying the demanding physics requirements posed by the D-3He fuel cycle may be more readily possible through the use of open-ended magnetic systems than it will be through the use of closed systems of the tokamak genre.