ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Laila A. El-Guebaly
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 2128-2132
Blanket Shield and Neutronic | doi.org/10.13182/FST92-A30035
Articles are hosted by Taylor and Francis Online.
The ARIES study investigates the potential of tokamaks as fusion power reactors and focuses on improving the economic and safety features of fusion by integrating the environmental constraints into the design from the beginning. The ARIES-II and ARIES-IV designs incorporate advanced physics and technologies that would be available over the next 5–20 years. The two designs have the same plasma physics but different fusion-power-core designs.1 ARIES-II uses liquid Li as a coolant/breeder with V alloy structure while ARIES-IV employs solid breeder with He coolant and SiC/SiC composite structure. Low activation materials were utilized in the design to reduce the radioactive inventory. A variety of blanket/shield options was examined for both designs and the relative merits of the various materials as a function of blanket/shield thickness were demonstrated. The lifetime of the structural components was determined based on the radiation-induced damage in V and SiC. In this paper, a comparison between the two designs based on detailed neutronics analysis is presented.