ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
J. Richard Smith
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 2117-2122
Blanket Shield and Neutronic | doi.org/10.13182/FST92-A30033
Articles are hosted by Taylor and Francis Online.
The multiplication of 14-MeV neutrons in bulk beryllium has been measured using the manganese bath technique. Values of the multiplication have been obtained for beryllium samples of four thicknesses. Detailed calculations of the multiplication and all the systematic effects were made, utilizing a highly detailed three-dimensional model with the Monte Carlo program MCNP. The Young and Stewart and the ENDF/B-VI evaluations for beryllium were utilized in the analysis. Both data sets produce multiplication values that are in excellent agreement with the manganese bath measurements for both raw and corrected values of the multiplication. We conclude that there is no real discrepancy between experimental and calculated values for the multiplication of neutrons in bulk beryllium.