ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
C. T. Yeaw, R.L. Wong
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1914-1917
Magnetic | doi.org/10.13182/FST92-A29999
Articles are hosted by Taylor and Francis Online.
The stability phenomenon is investigated numerically for a quench initiating in a cable-in-conduit conductor (CICC) at a significant distance from the ends. The thermo-hydraulic computer program, CICC, was used. The geometry chosen for this study is a toroidal field (TF) coil for the conceptual design activity (CDA) of the International Thermonuclear Experimental Reactor (ITER). Previous studies of short conductors have shown that convective helium flows, induced by the initiating heat pulse, control the stability of the conductor. The present study of a long conductor exhibits reduced energy margins and the absence of a transition region between the well-cooled and ill-cooled stability regions because the initiating heat pulse has difficulty sustaining a convective flow. The effect of heat-pulse duration and heated length were considered. For short, high-energy heat pulses, high convective and conductive heat-transfer coefficients can only be maintained for 10 ms. If the heat-pulse energy is spread over 100 ms, the steady-state heat-transfer coefficient is sufficient to stabilize the conductor. Pulse durations between 10 and 100 ms cause a decrease in energy margin. On the other hand, the conductor length heated was found to have only a small effect on stability.