ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
C. T. Yeaw, R.L. Wong
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1914-1917
Magnetic | doi.org/10.13182/FST92-A29999
Articles are hosted by Taylor and Francis Online.
The stability phenomenon is investigated numerically for a quench initiating in a cable-in-conduit conductor (CICC) at a significant distance from the ends. The thermo-hydraulic computer program, CICC, was used. The geometry chosen for this study is a toroidal field (TF) coil for the conceptual design activity (CDA) of the International Thermonuclear Experimental Reactor (ITER). Previous studies of short conductors have shown that convective helium flows, induced by the initiating heat pulse, control the stability of the conductor. The present study of a long conductor exhibits reduced energy margins and the absence of a transition region between the well-cooled and ill-cooled stability regions because the initiating heat pulse has difficulty sustaining a convective flow. The effect of heat-pulse duration and heated length were considered. For short, high-energy heat pulses, high convective and conductive heat-transfer coefficients can only be maintained for 10 ms. If the heat-pulse energy is spread over 100 ms, the steady-state heat-transfer coefficient is sufficient to stabilize the conductor. Pulse durations between 10 and 100 ms cause a decrease in energy margin. On the other hand, the conductor length heated was found to have only a small effect on stability.