ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. T. Yeaw, R.L. Wong
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1914-1917
Magnetic | doi.org/10.13182/FST92-A29999
Articles are hosted by Taylor and Francis Online.
The stability phenomenon is investigated numerically for a quench initiating in a cable-in-conduit conductor (CICC) at a significant distance from the ends. The thermo-hydraulic computer program, CICC, was used. The geometry chosen for this study is a toroidal field (TF) coil for the conceptual design activity (CDA) of the International Thermonuclear Experimental Reactor (ITER). Previous studies of short conductors have shown that convective helium flows, induced by the initiating heat pulse, control the stability of the conductor. The present study of a long conductor exhibits reduced energy margins and the absence of a transition region between the well-cooled and ill-cooled stability regions because the initiating heat pulse has difficulty sustaining a convective flow. The effect of heat-pulse duration and heated length were considered. For short, high-energy heat pulses, high convective and conductive heat-transfer coefficients can only be maintained for 10 ms. If the heat-pulse energy is spread over 100 ms, the steady-state heat-transfer coefficient is sufficient to stabilize the conductor. Pulse durations between 10 and 100 ms cause a decrease in energy margin. On the other hand, the conductor length heated was found to have only a small effect on stability.