ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. D. Pillsbury, Jr., S. Fairfax, R. Granetz, S. Horne, I. Hutchinson, G. Tinios, S. Wolfe
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1898-1904
Magnetic | doi.org/10.13182/FST92-A29996
Articles are hosted by Taylor and Francis Online.
Alcator C-MOD is the latest in a line of high field, compact tokamaks built and operated by the Plasma Fusion Center at MIT. From the electromagnetic standpoint the machine is characterized by toroidal field (TF) coils with sliding joints, a poloidal field (PF) coil set that is inside the bore of the TF coils, and very thick-sectioned, toroidally continuous, vacuum vessel and metal structures. The tokamak is cooled to liquid nitrogen temperatures and pulsed. At the toroidal field of 9 T, the maximum temperature in the TF rises to approximately room temperature. The pulsed nature of the current together with this wide temperature range requires a solution of the coupled electromagnetic and thermal diffusion problems. In addition, eddy currents induced in the thick electrically conducting structures perturb the spatial and temporal distribution of the poloidal magnetic field in the vacuum chamber, especially for the plasma breakdown and initiation phase and during fast plasma position control. The transient electromagnetic field problem associated with these regimes must be taken into account in the design and analysis of the tokamak. The results of analyses of the electromagnetic behavior of Alcator C-MOD will be compared with measured data.