ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
T. Kunugi, M. Akiba, M. Ogawa, O. Sato, M. Nakamura
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1868-1872
Plasma-Facing Component | doi.org/10.13182/FST92-A29991
Articles are hosted by Taylor and Francis Online.
The electron-gamma shower code EGS4 was applied to the simulation of energy deposition from runaway electrons in the plasma facing components of tokamaks. We calculated the energy deposition in the layers of carbon and molybdenum irradiated by electrons which energies were from 10 to 300MeV and the incident angles were from 0.5 to 25 degrees. The energy depositions calculated by EGS4 were compared to the results of GEANT3. EGS4 calculated higher total energy deposition rate in both carbon and molybdenum layers, and lower peak energy at the surface of molybdenum layer. EGS4 was also applied to the calculations of the energy depositions on three types of proposed ITER divertor targets. The results of these calculations showed that the peak deposited energies on metallic components were not affected by their geometrical shapes in case of low incident angle.