ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
T. Kunugi, M. Akiba, M. Ogawa, O. Sato, M. Nakamura
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1868-1872
Plasma-Facing Component | doi.org/10.13182/FST92-A29991
Articles are hosted by Taylor and Francis Online.
The electron-gamma shower code EGS4 was applied to the simulation of energy deposition from runaway electrons in the plasma facing components of tokamaks. We calculated the energy deposition in the layers of carbon and molybdenum irradiated by electrons which energies were from 10 to 300MeV and the incident angles were from 0.5 to 25 degrees. The energy depositions calculated by EGS4 were compared to the results of GEANT3. EGS4 calculated higher total energy deposition rate in both carbon and molybdenum layers, and lower peak energy at the surface of molybdenum layer. EGS4 was also applied to the calculations of the energy depositions on three types of proposed ITER divertor targets. The results of these calculations showed that the peak deposited energies on metallic components were not affected by their geometrical shapes in case of low incident angle.