ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
S. Suzuki, M. Akiba, M. Araki, K. Yokoyama
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1858-1862
Plasma-Facing Component | doi.org/10.13182/FST92-A29989
Articles are hosted by Taylor and Francis Online.
JAERI has been intensively developing plasma facing components for next step large fusion machines, such as ITER (International Thermonuclear Experimental Reactor). It is one of the most important issues to develop divertor plates in the engineering design activity of ITER. The divertor plates are exposed severe heat loads and particle fluxes from fusion plasma. In the operation condition of ITER, the divertor plates are required to withstand a peak heat flux of 15∼30 MW/m2. In the present study, monoblock divertor modules have been manufactured and tested in an electron beam test facility in JAERI, which consist of carbon reinforced carbon composite (CFC) materials brazed on an OFHC copper tube directly. Thermal cycling experiments have been carried out with a peak heat flux of 15 MW/m2. It has successfully been demonstrated that the present design of the ITER divertor plate can endure a stationary heat load of 15 MW/m2 for more than 1000 cycles.