ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
R. T. McGrath, A. J. Russo, R. B. Campbell, R. D. Watson
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1805-1816
Plasma-Facing Component | doi.org/10.13182/FST92-A29981
Articles are hosted by Taylor and Francis Online.
Tokamaks currently in operation deposit on the order of 1–30 MW/m2 onto plasma facing surfaces during normal operation and hundreds of MW/m2 for shorter periods of time (0.1–3 ms) during disruptions. Disruption deposited energies on future high-power tokamaks may be well in excess of 20 MJ/m2 Design of plasma facing components (PFCs) for such severe environments requires considerable advancements in materials development, armor tile bonding to actively cooled substrates, heat transfer, and many other areas of engineering concern. Considerable improvements in PFC performance, reliability and lifetime can also be accomplished through improved understanding and control of the edge plasma boundary layer. This paper covers both engineering and edge plasma physics issues that must be addressed in the development of reliable PFCs for ITER. Several specific examples are addressed since a complete treatment of all critical development issues would be lengthy. Topics covered include impurity generation and transport in the boundary layer plasma, materials response to intense pulsed disruption heat loads, runaway electron generation during disruptions, high heat flux performance and PFC fabrication issues. These topics are illustrative examples of the variety of complex issues that must be addressed in the development and design of PFCs.