ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. T. McGrath, A. J. Russo, R. B. Campbell, R. D. Watson
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1805-1816
Plasma-Facing Component | doi.org/10.13182/FST92-A29981
Articles are hosted by Taylor and Francis Online.
Tokamaks currently in operation deposit on the order of 1–30 MW/m2 onto plasma facing surfaces during normal operation and hundreds of MW/m2 for shorter periods of time (0.1–3 ms) during disruptions. Disruption deposited energies on future high-power tokamaks may be well in excess of 20 MJ/m2 Design of plasma facing components (PFCs) for such severe environments requires considerable advancements in materials development, armor tile bonding to actively cooled substrates, heat transfer, and many other areas of engineering concern. Considerable improvements in PFC performance, reliability and lifetime can also be accomplished through improved understanding and control of the edge plasma boundary layer. This paper covers both engineering and edge plasma physics issues that must be addressed in the development of reliable PFCs for ITER. Several specific examples are addressed since a complete treatment of all critical development issues would be lengthy. Topics covered include impurity generation and transport in the boundary layer plasma, materials response to intense pulsed disruption heat loads, runaway electron generation during disruptions, high heat flux performance and PFC fabrication issues. These topics are illustrative examples of the variety of complex issues that must be addressed in the development and design of PFCs.