ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Y-K. M. Peng, J. D. Galambos, P. C. Shipe
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1729-1738
Magnetic Fusion Reactor and Systems Studies | doi.org/10.13182/FST92-A29971
Articles are hosted by Taylor and Francis Online.
Small steady-state tokamaks for testing divertors and fusion nuclear technologies are considered. Based on present physics and technology data and extrapolation to reduced R0/a, H-D-fueled tokamaks with R0 ∼ 0.6–0.75 m, R0/a ∼ 1.8–2.5, and Bt0 ∼ 1.4–2.2 T can be driven with Ptot ∼ 4.5 MW to maintain Ip ∼ 0.5 MA and produce the ITER-level plasma edge and divertor conditions. Given an adequate steady-state divertor solution and Q∼1 operation based on fusion through the suprathermal component, D-T-fueled tokamaks with R0 ∼ 0.8 m, R0/a ∼ 2, and Bt0 ∼ 4 T can be driven with Ptot ∼ 15 MW to maintain Ip ∼ 4.6 MA and produce a peak neutron wall load WL ∼ 1 MW/m2. Such devices appear possible if the plasma properties at the lower R0/a remain tokamak-like and, for the D-T case, an unshielded center core is feasible. The use of a single conductor as the inboard leg of the toroidal field coils for this purpose is discussed. The physics issues and the design features are identified for such tokamaks with a testing duty factor goal of 10–20%.