ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
M.A. Hoffman, C.L. Gallagher
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1688-1692
Plasma Engineering | doi.org/10.13182/FST92-A29965
Articles are hosted by Taylor and Francis Online.
The CFAR (compact fusion advanced Rankine) cycle concept for an advanced tokamak reactor consists of a high temperature blanket cooled by evaporating mercury, microwave superheaters and magnetohydrodynamic generators for direct electric power generation. The vanadium alloy blanket is designed to minimize the MHD pressure losses in the front section where the mercury is evaporating. A passive concept for condensing the mercury vapor in the event of a LOCA (loss of coolant accident) is described. It is shown that an active cooling system is required to keep the vanadium alloy structure and the front part of the blanket at acceptable temperatures during cool-down after a LOCA.