ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J.P. Smith, C. Baxi, E. Reis, L. Sevier
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1658-1661
Plasma Engineering | doi.org/10.13182/FST92-A29959
Articles are hosted by Taylor and Francis Online.
A cryocondensation pump was designed for the baffle chamber of General Atomics DIII-D tokamak and will be installed in the fall of 1992. The purpose of the pump is to study plasma density control by pumping of the divertor. The pump is toroidally continuous, approximately 10 m long and located in the lower outer corner of the vacuum chamber of the machine. It consists of a 1 m2 liquid helium-cooled surface surrounded by a liquid nitrogen-cooled shield to limit the heat load on the helium-cooled surface. The liquid nitrogen-cooled surface is surrounded by a radiation/particle shield to prevent energetic particles from impacting and releasing condensed water molecules. A thermal enhancement coating was applied to the nitrogen shell to lower the maximum temperature of the shell. The coating is non-continuous to keep the toroidal electrical resistance high. The whole pump is supported off the water-cooled vacuum vessel wall. Supports for the pump were designed to accommodate the thermal differences between the 4K helium surface, the 77 K nitrogen shells, and the 300 K vacuum vessel supporting the pump and to provide a low heat leak structural support. Disruption loading on the pump was analyzed and a finite element structural analysis of the pump was completed. A testing program was completed to evaluate coating techniques to enhance heat transfer and emissivity of the various surfaces. Fabrication tests were performed to determine the best method of attaching the liquid nitrogen flow tubes to their shield surfaces and to determine the best alternative to fabricating the different shells of the pump. A prototype sector of the pump was built to verify fabrication and assembly techniques.