ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Chas. W. von Rosenberg, Jr.
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1600-1604
Inertial Fusion Driver | doi.org/10.13182/FST92-A29948
Articles are hosted by Taylor and Francis Online.
The laser driver system we describe is coupled to the SOMBRERO reactor concept. This is the Inertial Fusion for Energy (IFE) design concept generated by the W.J. Schafer Team for a recent DOE study1. The nominal plant design has 1 GW electrical output and requires a KrF laser driver system that supplies 3.4 MJ per pulse onto a spherically symmetric, direct drive target, at a repetition rate of 6.7 pps. We describe an architecture which results from the constraints of what must be supplied at the target, coupled with a final amplifier design which makes use of e-beam pumped, angularly multiplexed, 60 kJ final amplifier cavities, recent technology advancements in e-beams and pulsed power, and which has been optimized for system efficiency. Driver system efficiency of more than 7% (“wall plug”), and an effective efficiency of more than 9%, obtained through utilization of laser waste heat, are projected.