ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Chas. W. von Rosenberg, Jr.
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1600-1604
Inertial Fusion Driver | doi.org/10.13182/FST92-A29948
Articles are hosted by Taylor and Francis Online.
The laser driver system we describe is coupled to the SOMBRERO reactor concept. This is the Inertial Fusion for Energy (IFE) design concept generated by the W.J. Schafer Team for a recent DOE study1. The nominal plant design has 1 GW electrical output and requires a KrF laser driver system that supplies 3.4 MJ per pulse onto a spherically symmetric, direct drive target, at a repetition rate of 6.7 pps. We describe an architecture which results from the constraints of what must be supplied at the target, coupled with a final amplifier design which makes use of e-beam pumped, angularly multiplexed, 60 kJ final amplifier cavities, recent technology advancements in e-beams and pulsed power, and which has been optimized for system efficiency. Driver system efficiency of more than 7% (“wall plug”), and an effective efficiency of more than 9%, obtained through utilization of laser waste heat, are projected.