ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
L.D. Stewart, E.L. Hubbard
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1594-1599
Inertial Fusion Driver | doi.org/10.13182/FST92-A29947
Articles are hosted by Taylor and Francis Online.
The final drift, compression, and focusing segment of a heavy ion beam (HIB) driven inertial confinement fusion (ICF) reactor delivers the accelerated bunch of ions to the target with the required pulse length and beam spot size, in essence matching the accelerator output parameters to the desired beam parameters at the target. In this paper, we summarize the final drift, compression, and focusing design for the W.J. Shafer Associates (WJSA) Reactor Design Team's OSIRIS1,2 HIB-driven ICF reactor. Our design rearranges the bundle of beams emerging from the linac into two vertical columns, transports each column to a beam compressor, rearranges the columns into large-diameter rings, then focuses each of the beams in the target. Rationale of the design features and description of the beamline elements are given.