ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
D. C. Rovang
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1571-1577
Inertial Fusion Driver | doi.org/10.13182/FST92-A29943
Articles are hosted by Taylor and Francis Online.
Pulsed high field magnet coils are an integral part of the applied-B ion diode used in the light ion Inertial Confinement Fusion program at Sandia National Laboratories. Several factors have contributed in recent years to the need for higher magnetic fields of these applied-B ion diodes. These increased magnetic field requirements have precipitated the development of better engineering tools and techniques for use in the design of applied-B ion diodes. This paper describes the status of the applied-B ion diode engineering at Sandia. The design process and considerations are discussed. A systematic approach for maximizing the field achievable from a particular coil system consisting of the capacitor bank, the feeds, and the coil is presented. A coupled electromechanical finite element analysis is also described.