ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. C. Rovang
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1571-1577
Inertial Fusion Driver | doi.org/10.13182/FST92-A29943
Articles are hosted by Taylor and Francis Online.
Pulsed high field magnet coils are an integral part of the applied-B ion diode used in the light ion Inertial Confinement Fusion program at Sandia National Laboratories. Several factors have contributed in recent years to the need for higher magnetic fields of these applied-B ion diodes. These increased magnetic field requirements have precipitated the development of better engineering tools and techniques for use in the design of applied-B ion diodes. This paper describes the status of the applied-B ion diode engineering at Sandia. The design process and considerations are discussed. A systematic approach for maximizing the field achievable from a particular coil system consisting of the capacitor bank, the feeds, and the coil is presented. A coupled electromechanical finite element analysis is also described.