ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Xiang M. Chen, Virgil E. Schrock, Per F. Peterson
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1536-1540
Inertial Fusion Reactor Studies | doi.org/10.13182/FST92-A29938
Articles are hosted by Taylor and Francis Online.
In the HYLIFE inertial confinement fusion reactor, fusion occurs in pulses several times every second, x rays ablate material from the array of molten 2LiF-BeF2 salt (Flibe-Li2BeF4) jets used to protect the reactor vessel, generating a hot, dissociated and partially ionized vapor. Further evaporation of the blanket material occurs as the vapor radiates to the jets. Eventually this vapor must be condensed to restore sufficient vacuum for the next shot. The rate of condensation determines the permissible fusion repetition rate. With extensive dissociation, the chemical composition in the reactor will be complicated. A good understanding of the chemical kinetics is essential for the calculation of the composition and, therefore, for the accurate calculation of the vapor condensation rate. Analysis presented here shows that recombination rates will be fast compared to fluid dynamic and condensation time scales for a major portion of the condensation process, making it possible to assume quasi-equilibrium in the vapor phase.