ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Xiang M. Chen, Virgil E. Schrock, Per F. Peterson, Philip Colella
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1520-1524
Inertial Fusion Reactor Studies | doi.org/10.13182/FST92-A29935
Articles are hosted by Taylor and Francis Online.
The HYLIFE-II ICE reactor uses molten salt, Flibe (Li2BeF4), as a liquid blanket material. After the microexplosion of the D-T capsule in the center of the chamber the emitted x rays ablate a thin layer of the liquid and generate a high temperature plasma. This paper uses a second order Godunov numerical method to solve for the gas dynamics of the ablated material in the central cavity. Because the initial ablation has very small characteristic length scale (about 10 microns), a time varying mesh spacing is adapted. The equation of state for Flibe vapor is used in the calculation along with the parameters for the HYLIFE-II design. The results reveal that the gas dynamic response is sensitive to the initial energy deposition in the liquid and that two- dimensional shock effects are very important in determining the pressure and density field in the central cavity. By neglecting radiation heat transfer, the current calculation results give a conservative estimation of the shock strength.