ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sunil K. Ghose, Leonard M. Goldman, Kim D. Auclair
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1501-1505
Inertial Fusion Reactor Studies | doi.org/10.13182/FST92-A29932
Articles are hosted by Taylor and Francis Online.
Balance-of-plant design aspects of two inertial fusion energy (IFE) reactor concepts - the laser-driven SOMBRERO and the heavy ion beam (HIB) driven OSIRIS - are being evaluated at a preconceptual level. The net electrical output of both plants is selected as 1,000 MWe (reference case). The economics of higher and lower capacities are also being evaluated. The heat transport system for both the reactors utilizes an intermediate loop with liquid lead as the intermediate coolant. An intermediate loop is chosen to reduce the potential of tritium migration to the environment. Both reactors utilize a supercritical pressure steam power conversion system with double reheat to achieve high conversion efficiency; a high efficiency is critical due to the capital-intensive nature of the plants and the low efficiencies of the laser and HIB drivers. The SOMBRERO plant facility is characterized by a large reactor building dictated by the laser optics configuration requirements. The plant also includes two moderate-size laser buildings. The OSIRIS plant facility is characterized by a moderate size reactor building, whose size is dictated by the remote maintenance requirements. In addition, a five-kilometer-long HIB tunnel is a unique feature of this plant. A remote maintenance approach is proposed for each of the reactors consistent with state-of-the-art methods and tools.