ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
John C. Wesley, the U. S. ITER Home Teama
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1380-1388
International Thermonuclear Experimental Reactor | doi.org/10.13182/FST92-A29916
Articles are hosted by Taylor and Francis Online.
Design features and performance parameters for HARD — the high-aspect-ratio (A = 4) International Thermonuclear Engineering Reactor (ITER) design variant developed by the U. S. ITER Team — are presented. The HARD design makes it possible for ITER to achieve both the ignition/extended-burn and the steady-state/technology-testing performance goals set forth in the ITER Terms of Reference. These performance capabilities are obtained in a device that is otherwise similar in concept, size and cost to the low-aspect-ratio (A = 2.8) ITER design defined during the ITER Conceptual Design Activity (CDA). HARD is based on the same physics and engineering guidelines as the CDA design and achieves the same ignition performance (ignition margin evaluated against ITER-89P confinement scaling) with inductively-driven plasmas as ITER CDA, but with much greater margin for inductive sustainment of the pulse duration. With non-inductive current drive, HARD operates at lower plasma current and higher plasma density and bootstrap current fraction than ITER CDA, is less constrained by beta limit and divertor considerations, and has increased peaking of the neutron wall load at the test module location. These factors give HARD a much better potential than ITER CDA to achieve the steady-state operation and 1 MWa/m2 technology-testing fluence goals of the ITER objectives.