ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
D.K. Sze, M. Sawan, S. Herring, The ARIES Team
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 994-998
Material; Storage and Processing | doi.org/10.13182/FST92-A29881
Articles are hosted by Taylor and Francis Online.
About three percent of the fusion energy produced by a D-3He reactor is in the form of neutrons. Those neutrons are generated by D-D and D-T reactions, with the tritium produced by the D-D fusion. The neutrons will react with structural steel, deuterium, 3He and shielding material to produce tritium. About half of the tritium generated by the D-D reaction will not burn in the plasma and will exit as a part of the plasma exhaust. Thus, there is enough tritium produced in a D-3He reactor and careful management will be required. The tritium produced in the shield and plasma can be managed with an acceptable effect on cost and safety.