ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
U. Tamm, E. Hutter, G. Neffe, P. Schira
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 983-987
Material; Storage and Processing | doi.org/10.13182/FST92-A29879
Articles are hosted by Taylor and Francis Online.
In a three-stage tritium cleanup system the gaseous impurities O2, N2, CO2, CO, CH4, NH3 and H2O are removed from a contaminated hydrogen stream. Cleanup is performed with uranium getters which operate at temperatures between 500°C and 900°C. In long term experiments carried out in the VERDI test facility a capacity factor of approximately 60% has been achieved so far. The impurities have been retained down to values between < 1 ppmv and 10 ppmv. The cleanup system for the Tritium Laboratory Karlsruhe is presently under construction.