ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
K. Hirata, A. Matsumoto, T. Yamanishi, K. Okuno, Y. Naruse, I. Yamamoto
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 937-941
Material; Storage and Processing | doi.org/10.13182/FST92-A29871
Articles are hosted by Taylor and Francis Online.
Experimental study for separation of hydrogen isotopes has been performed by using a ‘cryogenic-wall’ thermal diffusion column refrigerated by liquid nitrogen. The column separated H-D system at total reflux and total recycle operational modes. The dependences of the separation factor on the column pressure and hot wire temperature were examined for the total reflux experiments. The optimum pressure observed was 30 kPa at 1273 K. The maximum separation factor at 473 K was larger than that at 1273 K since HD molecules were not produced on the hot wire by the isotope exchange reaction. The separation factor was exponentially proportional to the hot wire temperature. In the total recycle experiments, the separation factor was measured under a variety of flow rates, positions and compositions of the feed stream. The increase in the feed flow rate deteriorated the separation factor appreciably. The position and composition of the feed stream were also major parameters affecting the separation factor.