ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
J. Reimann, R. Kirchner, M. Pfeff, D. Rackel
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 872-877
Material; Storage and Processing | doi.org/10.13182/FST92-A29859
Articles are hosted by Taylor and Francis Online.
For tritium removal from a self-cooled Pb-17Li blanket of a fusion reactor, permeation into an intermediate NaK loop and precipitation of the tritide in a cold trap are foreseen. First experiments on the kinetics of hydride precipitation showed that i) low supersaturation concentrations are obtained at low concentration ranges, ii) these values are obtained after a very short cold trap loading period. Both results meet essential requirements for fusion blanket cold traps. Theoretical work has shown that two-dimensional calculations (including buoyancy effects) of the temperature, velocity and concentration distributions result in precipitation distributions which differ significantly from those obtained with 1d-models currently used to develop mass transfer relationships.