ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
P. Kim, Y. Sougawa, M. Nomura, M. Okamoto, Y. Fujii
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 833-838
Material; Storage and Processing | doi.org/10.13182/FST92-A29852
Articles are hosted by Taylor and Francis Online.
An RF discharge plasma device has been operated, to clarify the mechanism of plasma driven permeation ( PDP ) caused by the scrape-off plasma. As has been reported by us previously1, the electrons play a significant role to accelerate the PDP flux even in a low temperature plasma. Using the RF device, we measured the PDP fluxes of the deuterium as the function of bias voltage applied between the tested membrane ( iron, 0.05 mm in thickness ) and the plasma. The obtained PDP fluxes were found to strongly depend on the positive bias voltage. The Dα -emission intensity was also found to strongly depend on the positive bias voltage, and the profiles of the dependency are just consistent with the dependency of the PDP fluxes on the bias voltage. Based on the findings, it can be deduced that the acceleration of the PDP fluxes by the application of the positive bias voltage is caused by the neutral atoms of deuterium generated by the electron-impact dissociation of the deuterium molecules in the frontal region near the tested membrane.