ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
A. Perujo, S. Alberici, J. Camposilvan, F. Reiter
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 800-805
Material; Storage and Processing | doi.org/10.13182/FST92-A29846
Articles are hosted by Taylor and Francis Online.
The interaction of hydrogen isotopes with MANET (MArtensitic for NET) has been studied by a gas-evolution method in the framework of activities aimed at characterizing this steel. Temperatures in the range 573 – 873 K and loading pressures between 103 and 105 Pa have been used. In the temperature and loading pressure range studied, hydrogen and deuterium diffusivity in MANET is about two orders of magnitude higher than for AISI 316L (austenitic steel), ie in the range from 10−9 to 10−8 m2 · s−1. However, the solubility (Ks) in MANET is about an order of magnitude lower than in the austenitic steel, ie in the range 10−3 to 10−2 mol· m−3 · Pa−1/2. Changes of these properties caused by a phase change of the material at temperatures above 673 K are discussed. The hydrogen and deuterium data obtained were used to calculate the tritium solubility and diffusivity data by means of quantum-statistical theories.