ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
A. Perujo, S. Alberici, J. Camposilvan, F. Reiter
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 800-805
Material; Storage and Processing | doi.org/10.13182/FST92-A29846
Articles are hosted by Taylor and Francis Online.
The interaction of hydrogen isotopes with MANET (MArtensitic for NET) has been studied by a gas-evolution method in the framework of activities aimed at characterizing this steel. Temperatures in the range 573 – 873 K and loading pressures between 103 and 105 Pa have been used. In the temperature and loading pressure range studied, hydrogen and deuterium diffusivity in MANET is about two orders of magnitude higher than for AISI 316L (austenitic steel), ie in the range from 10−9 to 10−8 m2 · s−1. However, the solubility (Ks) in MANET is about an order of magnitude lower than in the austenitic steel, ie in the range 10−3 to 10−2 mol· m−3 · Pa−1/2. Changes of these properties caused by a phase change of the material at temperatures above 673 K are discussed. The hydrogen and deuterium data obtained were used to calculate the tritium solubility and diffusivity data by means of quantum-statistical theories.