ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
E. R. Gilbert, R. P. Allen, D. L. Baldwin, R. D. Bell, J. L. Brimhall, R. G. Clemmer, S. C. Marschman, M. A. McKinnon, R. E. Page, H. G. Powers, S. G. Chalk
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 739-744
Material Properties | doi.org/10.13182/FST92-A29836
Articles are hosted by Taylor and Francis Online.
To verify the performance of permeation-resistant cladding for tritium targets designed for a New Production Reactor Light-Water Reactor, a tritium test facility was designed, developed, fabricated, and certified. Testing is ongoing to verify the performance of reference-designed targets. Accurate measurements were taken of tritium permeating from barrier-coated cladding specimens immersed in high-temperature autoclaves configured to simulate reactor coolant conditions. The tritium test pressure is controlled by heating a zirconium-alloy getter, previously charged with tritium, to a temperature that corresponds to a specified test pressure. The apparatus for testing deuterium permeation was developed to calibrate nondestructive testing procedures for evaluating barrier quality and to screen defective industrial cladding. These permeation testing facilities perform parametric tests to evaluate the sensitivity of permeation to temperature, time, pressure, fabrication variables, barrier disparities, corrosion, and other factors. The experimental activities characterize the performance and material properties of target rod components as well as validate new nondestructive examination methods that measure target rod quality. The target rod components are 1) barrier-coated stainless steel cladding, 2) lithium aluminate pellets, 3) nickel-plated Zircaloy-4 getters, and 4) zirconium liners. In addition, data generated from statistical testing provide increased confidence in current analytical models that predict target rod performance during both steady state and calculated transient conditions. The test results indicate that the tritium release from a full core of NPR-LWR targets will satisfy design requirements for release of no more than 20,000 Ci of tritium to the reactor coolant, even with four failed target rods that release up to 50% of their inventory.