ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
U.K. consents to Hinkley Point B decommissioning
The U.K. government’s Office for Nuclear Regulation has granted EDF Energy formal consent to decommission the Hinkley Point B nuclear power plant in Somerset, England. The two-unit advanced gas-cooled reactor was permanently shut down in August 2022, and site owner EDF applied to ONR for decommissioning consent in August 2024.
E. R. Gilbert, R. P. Allen, D. L. Baldwin, R. D. Bell, J. L. Brimhall, R. G. Clemmer, S. C. Marschman, M. A. McKinnon, R. E. Page, H. G. Powers, S. G. Chalk
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 739-744
Material Properties | doi.org/10.13182/FST92-A29836
Articles are hosted by Taylor and Francis Online.
To verify the performance of permeation-resistant cladding for tritium targets designed for a New Production Reactor Light-Water Reactor, a tritium test facility was designed, developed, fabricated, and certified. Testing is ongoing to verify the performance of reference-designed targets. Accurate measurements were taken of tritium permeating from barrier-coated cladding specimens immersed in high-temperature autoclaves configured to simulate reactor coolant conditions. The tritium test pressure is controlled by heating a zirconium-alloy getter, previously charged with tritium, to a temperature that corresponds to a specified test pressure. The apparatus for testing deuterium permeation was developed to calibrate nondestructive testing procedures for evaluating barrier quality and to screen defective industrial cladding. These permeation testing facilities perform parametric tests to evaluate the sensitivity of permeation to temperature, time, pressure, fabrication variables, barrier disparities, corrosion, and other factors. The experimental activities characterize the performance and material properties of target rod components as well as validate new nondestructive examination methods that measure target rod quality. The target rod components are 1) barrier-coated stainless steel cladding, 2) lithium aluminate pellets, 3) nickel-plated Zircaloy-4 getters, and 4) zirconium liners. In addition, data generated from statistical testing provide increased confidence in current analytical models that predict target rod performance during both steady state and calculated transient conditions. The test results indicate that the tritium release from a full core of NPR-LWR targets will satisfy design requirements for release of no more than 20,000 Ci of tritium to the reactor coolant, even with four failed target rods that release up to 50% of their inventory.