ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
V. J. Corcoran, C. A. Campbell, P. B. Bothwell
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 727-732
Waste Management | doi.org/10.13182/FST92-A29834
Articles are hosted by Taylor and Francis Online.
Current UK strategy for decommissioning stainless steel plant used for tritium containment centres on heating/melting the bulk metal to effect release of dissolved gases. However, hydrogen isotope containment vessels used for approximately 20 years with mercury pumps and exposed to air and water impurities, exhibit tritium burdens greatly exceeding those predicted by simple gas solution in the parent metal. Investigation into the location of, and activity release from, the vessel material indicate the existence of two major tritium sinks:- (i) the bulk metal where in-depth contamination arises from diffusion/solution; and (ii) a highly active surface layer, responsible for holding the main tritium inventory. The relatively rapid release of tritium from the surface layer at room temperature, particularly under moist conditions demands that this latter activity must be removed before plant dismantling and heating/melting is effected. Against this requirement, laboratory work has been performed to evaluate methods of effectively decontaminating stainless steel plant items by gas purge and heat treatment and also to confirm theoretical diffusion/solution calculations as an acceptable baseline for estimating gas solution in the bulk metal. This work reports the effect of wet outgassing primary containments and the effect of heating/melting on tritium burdens in stainless steel.