ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
L. Rodrigo, J.M. Miller, S.R. Bokwa, R.E. Johnson, B.M. MacDonald, J. Senohrabek
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 629-635
Safety and Measurement (Monitoring) | doi.org/10.13182/FST92-A29818
Articles are hosted by Taylor and Francis Online.
Historically, ionization chambers have been used successfully to measure low-level tritium concentrations in air for radiation protection purposes. Problems have been encountered in applying this technique to measure much higher concentrations of tritium in gases other than air, particularly to measure tritium in argon and helium. An experimental program was, therefore, initiated to investigate the various factors that affect the response of ionization chambers. Carrier gas effects on the measurement of elemental tritium were investigated in the concentration range 0–150 Ci/m3. Higher than theoretical calibration factors were obtained consistently with low-level tritium gas standards in both helium and argon, while with high-level gas standards the experimental calibration factors were close to the theoretical value. Use of a commercial ionization chamber to measure tritiated water vapour in dry air streams resulted in severe contamination of the chamber. Water swamping of the dry air stream reduced the ionization chamber contamination to a negligible level, allowing reliable measurements to be made. The calibration of ionization chambers with representative process gases and operating conditions is necessary to ensure reliable tritium concentration measurements.