ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
W.T. Shmayda, N.P. Kherani, B. Wallace†, F. Mazza‡
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 616-621
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29816
Articles are hosted by Taylor and Francis Online.
St 198 alloy is attractive for glovebox clean-up systems operating with nitrogen cover gases, offering good tolerance to impurities which may permeate into the box from the environment and stable sorption speeds for alloy loadings as high as 360 mCi/g. At this loading the tritium concentration in the stream leaving the scavenger bed will be of the order of 400 µCi/m3. The alloy operating conditions can be adjusted to increase the quantity of tritium stored in the alloy or to reduce the tritium concentration in the effluent. Methane can not be removed from a nitrogen stream with St 198. A glovebox clean-up system based on the use of this alloy is under evaluation.