ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
Y. Belot, H. Camus, T. Marini
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 556-559
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29805
Articles are hosted by Taylor and Francis Online.
Recent observations suggested that formaldehyde can be incorporated in vegetation at a very high rate. This encouraged our laboratory to develop a methodology for determining tritiated formaldehyde (CHTO) in gaseous effluents containing HTO and HT as dominant species. CHTO being very soluble in water is collected in a solution of carrier formaldehyde. This carrier is necessary for precipitating the formaldehyde derivative of dimedone and collecting it by filtration. The precipitate, which contains the formaldehyde hydrogens, is freed from exchangeable tritium, dried in a oven, and combusted to water for tritium determination. CHTO can thus be separated from HTO with a high efficiency, leading to the possibility of determining accurately 1 Bq of CHTO in as much as 5 × 104 Bq of HTO. The methodology has been applied in preliminary experiments to determine the ratio of CHTO to HTO in effluents from a tritium-handling facility and effluents released from solid miscellaneous wastes. The median of the ratio of CHTO to HTO was 1.2 × 10−3 for the tritium-handling facility (40 samples), and 4.5 × 10−4 for miscellaneous solid wastes (12 samples).