ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Manouchehr Saljoughian, Hiromi Morimoto, Philip G. Williams
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 318-324
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29764
Articles are hosted by Taylor and Francis Online.
The synthesis of tritiated farnesyl pyrophosphate with high specific activity is reported. E,E-Farnesol was oxidized to the corresponding aldehyde followed by reduction with lithium aluminium tritide (5% 3H) to give [1-3H]-E,E-farnesol. The specific radioactivity of the alcohol was determined from its triphenylsilane derivative, prepared under very mild conditions. The tritiated alcohol was phosphorylated by initial conversion to an allylic halide, and subsequent treatment of the halide with tris(tetra-n-butyl)ammonium hydrogen pyrophosphate. The hydride procedure followed in this work has advantages over existing methods for the synthesis of tritiated farnesyl pyrophosphate, giving a much higher radiochemical yield and offering the possibility of achieving theoretical specific activity levels when fully tritiated LiAlT4 is employed.