ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S.K. Sood, C. Fong, K.M. Kalyanam, O.K. Kveton, A. Busigin, D.M. Ruthven
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 299-304
Tritium Processing | doi.org/10.13182/FST92-A29761
Articles are hosted by Taylor and Francis Online.
Pressure Swing Adsorption (PSA), which is a well established industrial process for separating and purifying industrial gases, is proposed for recovery of hydrogen isotopes from the ITER (International Thermonuclear Experimental Reactor) solid breeder He purge stream. The PSA process has an inherent advantage over a recently proposed Temperature Swing Adsorption (TSA) design because it allows much faster cycling (10 vs. 480 min.) and therefore has significantly (48 times) lower tritium inventory. The maximum tritium inventory for a 10 minute PSA cycle is less than 0.5 g of tritium, thus meeting an important safety goal of ITER. The PSA process is based on using molecular sieve 5A at 77 K, with pressure cycling from 1 – 2 MPa during the adsorption cycle, to a rough vacuum during regeneration. Experiments have been carried out to confirm the H2/He adsorption isotherms on molecular sieve 5A, and to develop new data points at low H2 partial pressures and a temperature of 77 K. A dynamic simulation model has been developed to facilitate system design and optimization. Simulation results indicate that a single-pass hydrogen isotope recovery of 50–80% is achievable, and that hydrogen purity of more than 99% is possible to obtain from the blanket purge stream containing only 0.1% total hydrogen in helium. Further experiments are underway to verify the dynamic simulation results and to investigate alternative adsorbent materials.