ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
J.L. Hemmerich
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 276-281
Tritium Processing | doi.org/10.13182/FST92-A29757
Articles are hosted by Taylor and Francis Online.
A re-evaluation of the characteristics of the intermediate flow regime with simultaneous thermal accommodation has shown the full potential of the Cryogenic Diffusion Pump for Fusion Reactor applications. A device with a characteristic diameter of 1m will have a pumping speed of 150m3s−1 for Deuterium at an inlet pressure of 2 × 10−2 Pa (Reactor Burn phase) and 400m3s−1 at an inlet pressure of 0.1 Pa (Reactor Dwell phase). Simultaneously, it separates impurities, Hydrogen isotopes and Helium and compresses the Helium. The Helium compression ratio (already proven to be ≥25 for 3% Helium in D2) can be further enhanced by additional D2 or He driven Diffusion Pump and Ejector stages. The latter feature will also simplify pumping requirements for the Helium Glow Discharge scenario: recirculation of Helium at 0.1 Pa (driven by D2 or He Ejector) and simultaneous removal of DT and impurities by cryocondensation requires no mechanical pump at all or only small turbomolecular-drag pump combinations for He jet drive. The design offers superior tritium compatibility: all metal, fully bakeable, it avoids use of absorbers and argon for helium pumping, thereby reducing overall tritium inventory both in the pump itself and by replacing major fuel clean-up facilities. The advantages of using the Cryogenic Diffusion Pump in a Fusion Reactor Vacuum System are discussed in detail.