ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Kozo Yamazaki, Osamu Motojima, Makoto Asao
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 147-160
Technical Paper | Experimental Device | doi.org/10.13182/FST92-A29734
Articles are hosted by Taylor and Francis Online.
Optimization studies have been carried out for the proposed Large Helical Device, which has a major radius of ∼4 m and a magnetic field of ∼4 T, in which a key experiment is to demonstrate a divertor concept. These studies clarified that configurations with a higher helical coil pitch parameter γc (γc ≳ 1.25) and a larger plasma minor radius are not consistent with the requirement of a clean divertor configuration. More compact, lower m systems (m ≲ 8) without helical coil pitch modulation are ruled out by the equilibrium beta limit of the plasma and the stability limit of the superconducting coil current because of the higher maximum magnetic field strength. Systems with a larger aspect ratio and larger m (m ≳ 12, γc ∼ 1.2 to 1.3) with better neoclassical confinement properties are not effective because of a lower stability beta and a narrower clearance between the divertor layer and the wall. An l = 2/m = 10/γc = 1.2 superconducting system is found to be an optimized high-nτT configuration for 4 m/4 T next-generation experiments with respect to the high-beta requirement, clean divertor installation, superconducting coil engineering, and cost optimization.