ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Keiji Tani, Ryuji Yoshino, Takashi Tuda, Tomonori Takizuka, Masafumi Azumi
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 103-113
Technical Paper | Plasma Engineering | doi.org/10.13182/FST92-A29730
Articles are hosted by Taylor and Francis Online.
The technique of ripple injection has been proposed for refueling in tokamak reactors. The usefulness of ripple-assisted fueling has been investigated by using an orbit-following Monte Carlo code. The penetration depth strongly depends on the beam energy. The ripple-enhanced outward flow of ripple-detrapped fast ions is not a serious problem. If Eb/Te0 ≤ 4 is chosen, the fuel efficiency becomes >80%. There is an optimum toroidal angle of the injection beamline to enhance the penetration depth of fast ions, and the range of angles that are effective for fueling is rather wide. The loss of alpha particles incident to the fueling has also been investigated by using the same code. By regulating the shape of the ripple-well region, the total alpha-particle loss can be reduced to <5%. Ripple-assisted fueling in the International Thermonuclear Experimental Reactor (ITER) has also been investigated. Because of the small aspect ratio, the field ripple is strongly decayed in the plasma. Consequently, central fueling presents some difficulties in ITER. However, fueling near one-half of the plasma minor radius is possible with an ∼6% alpha-particle power loss.