ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Keiji Tani, Ryuji Yoshino, Takashi Tuda, Tomonori Takizuka, Masafumi Azumi
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 103-113
Technical Paper | Plasma Engineering | doi.org/10.13182/FST92-A29730
Articles are hosted by Taylor and Francis Online.
The technique of ripple injection has been proposed for refueling in tokamak reactors. The usefulness of ripple-assisted fueling has been investigated by using an orbit-following Monte Carlo code. The penetration depth strongly depends on the beam energy. The ripple-enhanced outward flow of ripple-detrapped fast ions is not a serious problem. If Eb/Te0 ≤ 4 is chosen, the fuel efficiency becomes >80%. There is an optimum toroidal angle of the injection beamline to enhance the penetration depth of fast ions, and the range of angles that are effective for fueling is rather wide. The loss of alpha particles incident to the fueling has also been investigated by using the same code. By regulating the shape of the ripple-well region, the total alpha-particle loss can be reduced to <5%. Ripple-assisted fueling in the International Thermonuclear Experimental Reactor (ITER) has also been investigated. Because of the small aspect ratio, the field ripple is strongly decayed in the plasma. Consequently, central fueling presents some difficulties in ITER. However, fueling near one-half of the plasma minor radius is possible with an ∼6% alpha-particle power loss.