ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Keiji Tani, Ryuji Yoshino, Takashi Tuda, Tomonori Takizuka, Masafumi Azumi
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 103-113
Technical Paper | Plasma Engineering | doi.org/10.13182/FST92-A29730
Articles are hosted by Taylor and Francis Online.
The technique of ripple injection has been proposed for refueling in tokamak reactors. The usefulness of ripple-assisted fueling has been investigated by using an orbit-following Monte Carlo code. The penetration depth strongly depends on the beam energy. The ripple-enhanced outward flow of ripple-detrapped fast ions is not a serious problem. If Eb/Te0 ≤ 4 is chosen, the fuel efficiency becomes >80%. There is an optimum toroidal angle of the injection beamline to enhance the penetration depth of fast ions, and the range of angles that are effective for fueling is rather wide. The loss of alpha particles incident to the fueling has also been investigated by using the same code. By regulating the shape of the ripple-well region, the total alpha-particle loss can be reduced to <5%. Ripple-assisted fueling in the International Thermonuclear Experimental Reactor (ITER) has also been investigated. Because of the small aspect ratio, the field ripple is strongly decayed in the plasma. Consequently, central fueling presents some difficulties in ITER. However, fueling near one-half of the plasma minor radius is possible with an ∼6% alpha-particle power loss.