ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Gilbert A. Emmert, Ronald Parker
Fusion Science and Technology | Volume 21 | Number 4 | July 1992 | Pages 2284-2291
Technical Paper | Special Issue on D-He Fusion / D-3He/Fusion Reactor | doi.org/10.13182/FST92-A29721
Articles are hosted by Taylor and Francis Online.
The potential for D-3He experiments in the proposed Compact Ignition Tokamak (CIT) and International Thermonuclear Experimental Reactor (ITER) tokamak test devices is examined. In CIT, an energy multiplication Q of ∼0.3 can be obtained with an injection power of ∼100 MW. Without modifications to ITER, except for the change of fuel, it is found that Q of the order of 0.3 to 0.5 can be obtained. Breakeven with D-3He requires modification to the device to increase the elongation to 2.4, reduce the major radius to 5.6 m, and increase the magnetic field at the plasma from 4.9 to 5.6 T. Operation with a small amount of tritium seeding can reduce the auxiliary power required to achieve breakeven and leads to Q = 2 in an unmodified device.