ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Owen N. Jarvis, Edward W. Clipsham, Malcolm A. Hone, Brian J. Laundy, Mario Pillon, Massimo Rapisarda, Guy J. Sadler, Pieter van Belle, Karl A. Verschuur
Fusion Science and Technology | Volume 20 | Number 3 | November 1991 | Pages 265-284
Technical Paper | Experiment Device | doi.org/10.13182/FST91-A29668
Articles are hosted by Taylor and Francis Online.
The time dependence of the 2.5-MeV neutron emission from the Joint European Torus (JET) is reliably measured using fission chambers. The absolute calibration of these chambers is required to an accuracy of 10% or better for a range of intensities that may cover six or more decades. At JET, this calibration is now achieved by use of activation techniques, the most convenient of which involves fissionable materials (thorium and uranium) and delayed neutron counting. Because delayed neutron counting is unfamiliar in the fusion community, particular care is taken to obtain confirmation of the results based on this method by comparison with measurements made using the conventional activation procedure (involving indium, nickel, and zinc as target materials). As the activation measurements can be influenced appreciably by the weak emission of 14-MeV neutrons, this contribution is measured separately using high threshold energy activation reactions (in copper and silicon). Neutron transport calculations are employed to relate the measured local fluences of both 2,5- and 14-MeV neutrons to the total yields from the plasma. Absolute calibration accuracies of 6 and 8% are claimed for 2,5- and 14-MeV neutron yields, respectively; the accuracy of the 14-MeV to 2,5-MeV yield ratios is 6%.