ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
Y. Watanabe, T.A. Parish, B. Shofolu, W.D. Booth, R. Carrera, N.E. Hertel
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1938-1943
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29625
Articles are hosted by Taylor and Francis Online.
A shielding analysis of the IGNITEX device proposed by the University of Texas as a relatively inexpensive way to obtain an ignited plasmas has been performed. This paper emphasizes the radiation streaming effects on the radiation environment in the IGNITEX machine. The analysis was done by using a three-dimensional Monte Carlo code, MCNP, along with a one-dimensional discrete ordinate code and simple analytical formulas. The results show that the streaming effect on the global radiation in the test cell is not significant. The vacuum and maintenance penetrations, in particular, straight ducts, increase the radiation level at and near the outlet of the ducts considerably. The vacuum fuel processing and fueling rooms should be specifically shielded from the test cell. Access during the pulses must be limited since the radiation level in these areas is very high during D-T burning pulses because of the radiation streaming from the test cell.