ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Y. Watanabe, T.A. Parish, B. Shofolu, W.D. Booth, R. Carrera, N.E. Hertel
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1938-1943
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29625
Articles are hosted by Taylor and Francis Online.
A shielding analysis of the IGNITEX device proposed by the University of Texas as a relatively inexpensive way to obtain an ignited plasmas has been performed. This paper emphasizes the radiation streaming effects on the radiation environment in the IGNITEX machine. The analysis was done by using a three-dimensional Monte Carlo code, MCNP, along with a one-dimensional discrete ordinate code and simple analytical formulas. The results show that the streaming effect on the global radiation in the test cell is not significant. The vacuum and maintenance penetrations, in particular, straight ducts, increase the radiation level at and near the outlet of the ducts considerably. The vacuum fuel processing and fueling rooms should be specifically shielded from the test cell. Access during the pulses must be limited since the radiation level in these areas is very high during D-T burning pulses because of the radiation streaming from the test cell.