ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
D.E. Palmrose, T.A. Parish, R. Carrera, Y. Watanabe
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1931-1937
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29624
Articles are hosted by Taylor and Francis Online.
The activation characteristics of several materials were evaluated for short term as well as long term impacts on the operation of the IGNITEX device. Candidate design materials for the vacuum wall, magnet, and the cryostat outer covering were studied for their activation levels over the operational history of the IGNITEX fusion experiment and for 100 years beyond shutdown. Although DT fuel was of primary interest in this study, activation from DD shots also was investigated for the primary vacuum wall candidate material. Activation results showed for that the type of material chosen for each component can significantly affect the amount and the disposal classification of the radioactive wastes generated by the IGNITEX device.